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Near-infrared (NIR) analysis is increasingly used in the food industry and, more recently, in chemistry 
monitoring of polymer processes. However, quantitative interpretation is often highly empirical and 
subject to some distrust by many spectroscopists. In contrast, mid-infrared (MIR) analysis is widely 
accepted and the spectra often readily interpreted. This work provides further information on a recent, 
unifying application of a multivariate method termed “partial least squares”. A PLS model was 
generated given a series of M R  and MIR calibration spectra. This model was used to predict the MIR 
spectrum of an “unknown” polyethylene-polypropylene blend given its NIR spectrum obtained from 
in-line monitoring of the polymer melt and extruder. 
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INTRODUCTION 

The primary reason why near-infrared spectroscopy (NIR) is sometimes preferred 
over mid-infrared (MIR) spectroscopy is that absorption is generally very weak in 
the NIR region; thus, path lengths need to be very long. As shown in Table I, 
typical path lengths in the NIR region are more than an order of magnitude longer 
than those used in the MIR region. TWO specific examples of the consequences are 
(i) when NIR diffuse reflectance analysis is used, essentially no sample preparation 
is required (e.g., pellets directly from an extruder can be poured into a large quartz 
cell and scanned) and (ii) when transmission NIR with fiber optics are used to 
monitor composition in polymer melt flowing through an extruder, the distance 
between the end of the transmitting probe and that of the receiving probe in the 
melt is typically as large as 0.5 cm. (i.e., flow between the probe tips is readily 
maintained). 

NIR analysis has been used for other reasons as well. As Table I shows, the 
response in the NIR region consists mainly of overtone and combination bands. 
Some species have much stronger absorption in this region than others: hydroxyl 
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232 LEW, KHAN, AND B A L E  

TABLE I 

Comparison of MIR and NIR 
MIR NIR 

Wavelength (nm) 2500-5oooo 800-2500 
(cm-’1 4000-200 12500-4OOo 

Vibrational Mode Fundamental Overtones & 
Combinations 

Peaks Narrow, Resolved Broad, Overlapped 

Length 
Typical Path 0.1 mm 0.5 cm 

(0-H) and amine (N-H) groups are important examples. Much of the earlier NIR 
work centered on these groups because of their presence in agricultural and food 
products 11, 21. 

There are two main reasons why NIR is not more widely employed: (i) just as 
some species have much stronger absorption in the region, some have such weak 
absorption relative to others that they cannot be discerned, and (ii) the overtone 
and combination bands are very broad and overlapped. The first reason limits 
applicability but tends to be very system dependent. Thus, the main response to 
this reason has been to empirically select acceptable systems. The second reason 
means that interferences amongst absorbances can readily spoil attempts to 
correlate absorbance-at-one-wavelength versus concentration correlations. Al- 
though such attempts are sometimes useful, a major impetus to the use of NIR has 
been the employment of a computer-implemented technique known as “partial 
least squares” (PLS). 

Partial least squares, however, is a complex numerical method. Effective com- 
mercial software packages are now available, but the method is distrusted. For 
example, a typical application of the method might be to provide the concentration 
of a certain polymer or additive in a mixture. Inspection of this “single number” 
appearing from a “black box’’ computer program is obviously not very reassuring. 
Software suppliers emphasize the use of certain diagnostic plots in their software 
-standard error of prediction plots, loading plots, and score plots, for example. 
These are very useful and need to be precisely inspected. However, the idea 
underlying our work is that for complex materials, such as polymers, additional 
(reassuring) chemistry information is needed from application of PLS to the NIR 
spectrum. 

Mid-infrared spectra are widely used in polymer science both qualitatively and 
quantitatively. However, NIR analysis increasingly is being used [3-61. If the MIR 
spectrum corresponding to the obtained NIR spectrum could be calculated, an 
analyst could immediately see whether the NIR spectrum was reasonable. Further- 
more, the whole MIR spectrum would be available for interpretation. Barton et al. 
[71 attempted to approach this problem by calculating and mapping correlation 
coefficients corresponding to the absorbances observed for MIR with those for 
NIR. However, considerable intercorrelation across the entire spectrum was ob- 
served! Recently, we have shown how it is possible to generate the MIR spectrum 
from the NIR spectrum using PLS [81. This paper further explains this approach. 
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Quantitatlve Analysls 

In MIR analysis, often a single wavelength is selected and Beer’s law used. 

Where a is absorbance, c concentration of the absorbing species, and k the 
extinction coefficient.If q different species are present and can all possibly absorb 
over the same wavelength range, then we can select n wavelengths and measure 
the absorbance at each of these wavelengths for all m of our samples. Thus, we 
now have n X m equations, one for each absorbance measurement. Written for 
two samples the equations are: 

Sample 1 
a11 = C l l k l l  + C12k21 + *.-  + C l , k , l  

a 1 2  = C l l k 1 2  + C12k22 + * * *  + C l q k q 2  

a 1 n  = C l l k l n  + ~ 1 2 k 2 n  + . * *  + c , q k q n  

. . . . . . . . . . . . . . . . . . . . . . . . . . .  

Sample 2 
u~~ = czlkll + czkz1 + - * *  +cZqkql 
a, = cZlk,, + ~~~k~~ + A * *  +c2,kq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
a 2 n  = ~ 2 1 k l n  + ~ 2 2 k 2 n  + + ~ 2 q k q n  

In matrix form, equations for all m samples can be written simply: 

A = CK ( 3) 

where A is the m x n matrix of measured absorbances, C is the m x q matrix of 
species concentrations, and K is the q X n matrix of extinction coefficients. 

The usual procedure involves solving these equations for the extinction coeffi 
cients K in a “calibration” step followed by use of the K values in a “prediction” 
step to obtain the concentration values for an unknown sample [9-141. When MIR 
is used, the method employed is “classical least squares”. The problem examined 
here is to generate an MIR spectrum from an NIR spectrum. Because of each 
wavelength, Beer’s law is obeyed in both the NIR and MIR, we can write the 
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234 LEW, KHAN, AND BALKE 

matrix equation describing each MIR measured absorbance with each and every 
measured NIR measured absorbance: 

= ANIR (4) 

where K is the matrix of regression coefficientsresulting from performing multiple 
linear regression on the MIR and NIR absorbance data. 

However, if there are say, 10 samples and 140 wavelengths (1400 absorbance 
values for each of MIR and NIR), then the 140 X 140K matrix represents 19,600 
values! The many wavelengths where the MIR and NIR do not correlate, com- 
bined with the matrix sizes, defeat numerical solution attempts. 

In PLS, the absorbance data for MIR and for NIR is expressed as the product 
of two matrices, similar in form to the Beer’s law formulation of Equation (3) 
Ell-201. The matrices forming the product are, however, no longer concentrations 
and extinction coefficients. They are now “scores” (TMIR,  T N I R )  and “loadings” 
(‘MI, 9 pNIR)’ 

ANIR = T N I R ~ N I R  

Where A is still the m X n matrix of absorbances but now T is a m X h matrix of 
scores and P is an h X n matrix of loadings. Equation (5) is used to model the 
absorbance data using PLS. The relationship between the NIR and MIR data is 
through T and is a result of regressing the matrices against one another. If h is 3, 
then there are three linear combinations of scores and loadings (three “factors’? 
that will result in the observed absorbance. 

all = tllpll + t 1 2 p 2 1  + t13P31 

‘12 = t l l P 1 2  + t 1 2 p 2 2  -k t 1 3 P 3 2  

‘21 = t 2 1 P 1 1  + t 2 2 p 2 1  + t 2 3 P 3 1  

a22 = t 2 1 P 1 2  + t 2 2 p 2 2  + t 2 3 p 3 2  

a m n  = f m l P 1 1  + t m ~ P 2 1  + t m 3 P 3 n  

. . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  

Because of the lower dimensionality of the T and P matrices compared to the K 
matrix of Equation (41, this is now a solvable problem. The solution for 1400 
absorbance values now involves 900 data values instead of the 19,600 with classical 
least squares. 

The scores T are actually numerically transformed spectral absorbance values. 
Most of the dominant information is contained within the first factors of the score 
and loading P matrices. The factor loadings show the relative importance of the 
variables (wavelength) with respect to a factor. 
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PREDICTION OF INFRARED SPECTRA 235 

The number of factors required to model the data is an important considera- 
tion. It requires calculation of the square error of prediction (SEP) for each factor 
added. The SEP in terms of the spectral absorbances is given as: 

SEP = standard error of prediction 

F = factor number 

Nh = total number of wavelengths 

N, = total number of samples (or spectra) 

A = measured absorbance 

AF,Pred = predicted model absorbance for factor, F 

i = sample number 

j = wavelength number 

In applying PLS, the above mentioned quantities are displayed graphically as 
spectra, standard error of prediction plots, and score plots in order to assess the 
modeling. Examples of these plots are shown in the Results and Discussion 
section. 

Finally, once the data is modeled-ie., the loading and score matrices are 
obtained from a calibration set, and the optimum number of factors is decided 
upon-these matrices can be used with an unknown NIR spectrum to transform 
that spectrum into a MIR spectrum (or vice versa, if desired). 

EXPERIMENTAL 

Extrusion: Polypropylene (PP6631, Himont Canada, Montreal, Quebec) and 
high-density polyethylene (HDPE 4052N, Dow Chemical Canada, Sarnia, Ontario) 
blends were produced by melt mixing of the two homopolymers in an extruder. A 
Deltaplast D40-150-24 single-screw extruder was used for processing operating at 
200°C and 40 rpm. The extrudate strands from the extruder were run through a 
cooling bath and pelletized using a Model 881251 Laboratory Pelletizer (Brabender 
Instruments, New Jersey). 

Inl ine NIR Monitoring: In-line monitoring was accomplished using a Guided 
Wave (California) Model 260 NIR optic spectrophotometer. The Model 260 is a 
post-dispersive scanning spectrophotometer equipped with a lead sulfide detector. 
A tungsten-halogen lamp is used as a source with light dispersion accomplished 
using a concave holographic grating with 300 lines/mm. Figure 1 shows the 
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236 LEW, KHAN, AND B A L E  

NIRAMlyzcr 

FIGURE 1: System used to obtain in-line NIR data. 

arrangement of the equipment utilized. The NIR analyzer was equipped with 5.5 
in. long optical probes with a sapphire lens with 0.25 in 0.d. The probe body is 
manufactured out of 316 stainless steel. The transmission probes were inserted 
directly into the melt through a specially designed transition flange at the exit die. 
The probes were connected to the NIR analyzer using 2-m long single strand fiber 
optic cables protected by a PVC-coated aluminum monocoil jacket. In-line NIR 
scans of the blends were obtained using a pathlength of 5 mm. NIR scans were 
taken from 1100 to 2400 nm with a resolution of 2 nm. Eleven spectra resulted, 
one for each polymer blend composition examined. The analyzer was interfaced to 
a PC-compatible computer for control and data collection. 

Fourier Transform lnfrared Spectroscopy (FT/a: The polymer extrudate ob- 
tained from the pelletizer was used to make thin films for MIR analysis. Approxi- 
mately 70 mg of polymer were weighed and placed between two sheets of 
aluminum foil in a constant thickness film maker (Specac, UK). The film makers 
consisted of two round metal platens with a spacer ring in which the polymer was 
heated and pressed. The whole assembly was placed into a hot press (Carver Inc., 
Wisconsin) operating at 180°C. The polymer sample was pre-heated for 5 min and 
pressed at 4 metric tons for 5 min. The film maker assembly was then placed into a 
cooling chamber for 5 minutes. Film thicknesses were approximately 250 pm. MIR 
spectra were obtained using a Mattson Galaxy GL-6020 FTIR spectrometer 
(Mattson Instruments, Madison, Wisconsin). A helium-neon laser was used as a 
light source with a mercury-cadmium-telluride detector. Samples were scanned 128 
times with a resolution of 4 em-' from 400 to 4000 cm-'. Single-sided interfero- 
grams were obtained with a mirror scanning velocity of 2.5 cm/s. The FTIR 
instrument was interfaced to a 486 PC-compatible computer for data acquisition. 
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PREDICTION OF INFRARED SPECTRA 237 

RESULTS AND DISCUSSION 

The results of applying PLS to convert NIR to MIR spectra can most easily be 
understood by considering a series of different types of graphical plots. These plots 
and their interpretation are as follows: 

MIR and NIR Spectra 

Figures 2 and 3 show the experimentally measured MIR and NIR spectra, 
respectively, for six of the polyethylene-polypropylene blends. In accordance with 
convention, the NIR spectra are plotted versus wavelength, whereas the MIR 
spectra are plotted versus wavenumber. Absorbance at various wavelengths in the 
MIR spectra can readily be assigned: strong methyl rocking vibrations from 841 to 
972 cm-’, CH, bending vibrations at 1377 and 1460 cm-’, CH, rocking at 720 and 
730 cm-’, and so forth. However, from Barton et al. 171 we may anticipate that 
similar assignments for the NIR spectra are much more uncertain. Spectra for ten 
blends were used for the PLS calibration step. The spectra for the 50:50 blend 
was omitted from the calibration and used as the “unknown.” In utilizing PLS, for 
MIR the wavelength range of 400 to 4000 cm-’ was regressed against the NIR 
range of 958 to 1237 cm-’. 

A 
1.1 

0.1 

I I I I 1 I I 

800 900 iooo I100 1200 1300 1400 is00 

Wavenumber [crf‘] 
FIGURE 2: MIR calibration spectra obtained ofCline (six of ten spectra shown) for 
polyethylene-polypropylene blends [8]. 
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238 LEW, KHAN, AND BALKEi 

1300 Moo 1700 1900 2100 2300 

Wavelength h m ]  
FIGURE 3: NIR calibration spectra obtained in-line (six of ten spectra shown) for polyethylene-poly- 
propylene blends [81. 

Standard Error of Predlction Plots 

A plot of the SEP as a function of wavelength and number of factors enables the 
analyst to see when the SEP reaches a minimum as the number of factors is 
increased. By selecting only the first few (and most influential) factors, the 
important information is retained while noise is discarded. This also results in 
significant data compression. Figure 4 shows such a plot. From this figure it was 
evident that only one factor was necessary to predict the MIR spectrum in this 
region (958 to 1237 cm-’1: SEP shows only a very small additional decrease as the 
model progressively uses one to two factors, and beyond two factors the SEP 
actually begins to increase. The neighbouring two regions of the spectrum required 
three factors 181. 

Loadlng Plots 

A plot of P,, versus wavelength (a “factor loading plot’? shows the NIR regions 
that are important for prediction of MIR spectra for a particular factor. Similarly, 
a plot of PMIR versus wavelength shows the MIR regions where an important 
response will be seen for a particular factor. 
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PREDICTION OF INFRARED SPECTRA 239 

SEP 1 
FIGURE 4 Standard error of prediction (a measure of how well the MIR spectrum for the 50 : 50 
blend is predicted) versus the number of factors used [8]. 

Figures 5 and 6 show the plots of the loadings versus wavelength (P,,, and 
P,,, , respectively) for all regions examined when only one factor is used to explain 
the data for the “unknown.”These plots resemble spectra and, when compared to 
Figures 2 and 3, revealed that practically all significant absorbances were contribut- 
ing to the modelling. 

Loading plots show the variables (in this case wavelength) that are most 
important to the model. Figure 7 is a plot of the PLS second factor loadings for the 
NIR spectra (as mentioned above, Figure 6 is for the first factor). This second 
factor plot illustrates the regions of the spectra where not all the variation of the 
data has been accounted. Regions where the variables show the most variation for 
a particular factor are indicated by high loadings. Figure 7 shows the regions where 
the variation in a particular variable were not completely accounted by the first 
factor. Regions that were accounted by the first factor are wavelength ranges 
where the loading is close to zero. The model used the remaining variation to try 
to improve the model prediction. Regions of high frequency fluctuation of the 
loading above and below zero indicate that noise is now being modeled and the 
data overfit. Hence, in addition to the use of the SEP plots, loading plots are a 
useful graphical method for the determination of the optimal number of factors 
required for the PLS model. 
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1 

Score Plots 

Scores for a particular factor show the relationship of the individual samples to 
some underlying variation between samples. Figure 8 shows a plot of the scores for 
one and two factors versus sample number obtained from the PLS modelling for 
the first MIR wavelength region. Sample numbers were assigned from one to 
eleven in order of increasing polypropylene content. For the first factor, a good 
linear correlation was obtained between the samples. In this particular case, the 
variation can readily be attributed to the systematically different composition of the 
samples. The scores for the second factor are much lower in magnitude but 
indicate the presence of a possible second correlation amongst the samples. This 
correlation may be due to slight variations in the blend composition unaccounted 
for by the first factor or by some as yet undetermined regular varying property 
amongst them. 

Predlcted and Experlmental MIR Spectra 

Figure 9 shows the final result of the prediction of the MIR spectrum of the 
“unknown” from the NIR spectrum for all three regions of wavelength examined 
superimposed on the measured MIR spectrum. Agreement is excellent except for 
very strong absorbances that may well represent non-linear responses to concentra- 
tion. Also, it appears that very narrow peaks with absorbance depending upon only 
one data point were more difficultto predict than broader peaks. The difference 
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Score  
1-5% 

Score  

1 2  3 4 5 6 7 B B 1 0 1 1 1 2  
FIGURE 8: Scores versus sample number for: (A) one factor, (B) two factor. 

Indox 
1.0- 

A 

0.B- 

0.6-  

0.4- 

0.2-  

1 
I I I I 1 I I I 

800 900 1000 1100 1200 1900 1400 1500 

Wavenumber [criill 
FIGURE 9: Measured (solid line) versus predicted (dashed line) for MIR spectrum of 50 : 50 blend 
[SI. 
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PREDICTION OF INFRARED SPECTRA 243 

between predicted and experimental MIR spectra can be examined closely using a 
plot of residuals (plotting the difference between the two spectra versus wave- 
length) 181. 

The effect of an absorbing contaminant on the derived MIR spectrum has yet to 
be examined. However, detection of contaminants can be performed during both 
PLS calibration and prediction for a particular wavelength or sample. Hence, any 
peculiar NIR spectra or wavelength may be detected and removed from the model 
during calibration or during the prediction phase. 

CONCLUSIONS 

Partial least squares is an extremely powerful, but complex, numerical method that 
is greatly assisted by a variety of diagnostic plots. In a novel, unifying application of 
this method, when calibration spectra (i.e. corresponding NIR-MIR spectra) were 
supplied (but not concentrations), PLS readily predicted the MIR spectrum from 
the corresponding NIR spectrum. Agreement was excellent except for very strongly 
absorbing peaks. This provides the analyst with valuable and reassuring additional 
information, an entire MIR spectrum, to accompany the NIR spectrum. 
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